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STATISTICAL THEORY OF THE CRITICAL POINT 

E.  A. Zhi l ’kov 

ABSTRACT g2abfi 
A s t a t i s t i c a l  theory of t h e  c r i t i ca l  po in t  i s  

presented i n  t h i s  work. The theory  is  appl ied  t o  an  

$-“c 
examination of phase changes i n  o t h e r  systems. 

The e x i s t i n g  phenomenological theory  of t h e  c r i t i ca l  po in t  (Ref. 11, - /54* 

which i s  based on t h e  equat ion  given by van der  Waals, i s  no t  s a t i s f a c t o r y ,  

because it does no t  enable  one t o  employ t h e  method of Gibbs i n  examining 

both t h e  thermodynamics of a system ( i .e . ,  t h e  equat ion  of s ta te ,  s p e c i f i c  

h e a t ,  s u r f a c e  energy) and i n  determining t h e  c o r r e l a t i o n  consecut ive ly .  

The s t a t i s t i ca l  t h e o r i e s  of t he  c r i t i ca l  p o i n t  given by Mayyer (Ref. 2 )  

and F i she r  (Ref. 3) e n t a i l  s i g n i f i c a n t  mathematical  d i f f i c u l t i e s ,  which 

have no t  y e t  been surmounted, and a r e  v a l i d  .only f o r  t h e  case  of r a r e f i e d  

gases .  Lee and Yang (Ref. 4 )  cons t ruc ted  a theory  of condensation, 

employing t h e  model of I s i n g .  Their theory  is  app l i cab le  t o  t h e  l i q u i d  

phase,  b u t  is  no t  e n t i r e l y  c l e a r  in  phys i ca l  terms i n  i t s  p resen t  form. 

Recent ly ,  Ger schandBer l in  examined a s p h e r i c a l  g r i d  gas  (Ref. 5 ) .  

One s p e c i f i c  c h a r a c t e r i s t i c  of s t a t i s t i ca l  t h e o r i e s  is  t h e  n e c e s s i t y  

of a passage t o  t h e  l i m i t ,  wi th  which i t  i s  p o s s i b l e  t o  determine t h e  

* Note: Numbers i n  t h e  margin i n d i c a t e  pagina t ion  i n  t h e  o r i g i n a l  
fo re ign  t e x t .  



decomposition of a system into two phases. The book by Khill (Ref. 6 )  

presents a rather comprehensive analysis of the statistical theories. 

In a study by the author and R. L. Stratonovich (Ref. 7), a new 

approach to the problem being studied was pointed out. In essence, the 

study (Ref. 7) presented the statistical dynamics of an equilibrium 

heterophase system. However, in this work we confine ourselves to 

examining only the general expression for the thermodynamic potential 

of a system and to an analysis of the equation of state. Later, in 

(Ref. 8) we determined the correlation of the system, and a formula 

was obtained for the intensity of scattered light close to the critical 

point. This article represents a direct continuation of the studies 

(Ref. 7) and (Ref. 8 ) .  We shall calculate the surface energy between 

phases below the critical temperature. We shall study the conduct of 

derivatives of the thermodynamic potential with respect to temperature and 

the external parameter, as a function of temperature and the 

external parameter. We shall provide a method for determining the 

critical parameters of a system. 

1. A s  is well known, there is no clear information on the 

properties of a surface layer between phases in the canonical method 

given by Gibbs. 

problem in order to calculate the surface energy. 

expression for the thermodynamic potential of a system (see appendix) 

Therefore, it is necessary to solve an independent 

Let us write an 

Here @41 = Nq41 are the thermodynamic phase potentials calculated on /55 
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the basis of Gibbs' method: = Nomj is the total number of particles 

e-BU 

m/ 
in the system: @ o = . ~ m . q ;  4- - 9  u is the potential of interaction 

between molecules of different phases (below, U is assumed to be a 

constant). Let us employ the following simple reasoning. Let us 

assume that there is only one phase in the system - for example, 1. 

There is no boundary between the phases at low temperatures. 

dynamic potential of such a system is @ I .  

two phases, a boundary appears for T < TK and 

decomposes into phases. Consequently, the surface energy between the 

phases C equals the excess thermodynamic potential, which is caused by 

The thermo- 

When there is a mixture of 

O0 < Uh,', , when the system 

the appearance of a boundary: 

In accordance with experiment , at the critical point ( 0 1  (aK, 8,) 

= (aK, ex); 0, << 1) the surf ace energy becomes zero. 

It is of interest to estimate the dimensions of the surface layer. 

For this purpose, we can utilize the smoothed correlation function 

(Ref. 8) :  

!!!i 
j 

(ml = is the particle density). 

Utilizing ( 3 ) ,  we can find the effective thickness of the surface 

layer (see [Ref. 4 1 )  : 
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Close t o  t h e  c r i t i ca l  p o i n t ,  i t  is  advantageous t o  expand t h e  

d i f f e r e n c e  ~1 - 9-1 i n  s e r i e s :  

where 

It can be seen  from (5) t h a t  t h e  th ickness  of t h e  s u r f a c e  l a y e r  i nc reases  

according t o  t h e  fol lowing l a w  as t h e  c r i t i ca l  po in t  i s  approached: 

const d -  
ie - e,\ ' 

i f  it moves along t h e  i soba r ,  and 

const d -  
. i u -  aKl 

(7) 

f o r  movement along t h e  isotherm.. 

A t  t h e  c r i t i c a l  poin t  t h e  th ickness  of t h e  l a y e r  has  t h e  f i n i t e  

va lue  : 

(8) ' d - const q. 

A change i n  t h e  s u r f a c e  energy is  descr ibed by t h e  approximate l a w :  /56 

L e t  us  w r i t e  t h e  expressions f o r  su r face  energy and th i ckness  of t h e  

s u r f a c e  l a y e r  f o r  a real  gas model. I n  t h e  case of t h e  gas  (see [Ref. 71): 
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( t h e  mob i l i t y  of gas molecules i s  taken i n t o  account a d d i t i o n a l l y  when 

c a l c u l a t i n g  $1). 

S u b s t i t u t i n g  (10) i n  (2) and ( 4 ) ,  w e  o b t a i n  (Figure 1 ) :  

2 

and 
const d -  

1 
8 

X u -  

Figure 1 

Dependence of Surface Energy C on Temperature 
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2. Let us now study the derivatives of the thermodynamic potential. 

Differentiating (1) with respect to temperature, we can determine the 

entropy and specific heat of the system: 

16 

It is possible to find the corresponding derivatives with respect /57 

to the external parameter. For the second derative, which determines 

the inclination of the equation of state curve, we have: 

When the interaction between phase molecules can be disregarded 
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(i. e. , I@, - @-il>> 2% ) , expressions (13) , (14) , and (15) change 

i n t o  r e l a t i o n s h i p s  of t h e  following type:  

L e t  u s  examine, f o r  example, t h e  conduct of s p e c i f i c  hea t  c l o s e  t o  t h e  

c r i t i ca l  po in t .  The fol lowing term p lays  t h e  b a s i c  r o l e  i n  t h i s  region:  

This  l eads  t o  t h e  f a c t  (5) t h a t  t h e  s p e c i f i c  h e a t  changes according 

t o  t h e  fol lowing l a w  as t h e  c r i t i c a l  po in t  i s  approached: 

f o r  cons t an t  a = ak, o r  

f o r  cons t an t  temperature  €3 = 8,. 

and t h e  d 2 0  
da2 

And now t h e  conclusions can be drawn regarding - 
subsequent d e r i v a t i v e s .  

Thus, a t  t h e  c r i t i c a l  p o i n t  the d e r i v a t i v e s  of t h e  thermodynamic 

p o t e n t i a l  are continuous func t ions  of temperature  and pressure .  A t  t h e  

same t i m e ,  w e  should po in t  ou t  t h e  slow change i n  t h e  f i r s t  d e r i v a t i v e s  

(see graphs f o r  t h e  equat ion  of s t a t e  [Ref. 71) and t h e  sharp  inc rease  

i n  t h e  second d e r i v a t i v e s  (18) ,  (19) in t h i s  i n t e r v a l  of temperature  

and p res su re .  
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Let us give a formula for specific heat of a real gas at constant 

pressure (Figure 2) : 

2 R  (lnx.A)2 
64 [ (?)'+ p]"" 

(20) /58 

Figure 2 

Dependence of Specific Heat on Pressure at Different 

Temperatures A=lO-l. 1-C, = 5cal/g*degree, q=10-2 

2-C, = 3cal/gadegree, q=10-2; 3-C, = 3cal/g-degree, 

q = 5010-~. 

The terms containing q and its derivatives are small for a real gas, 

and we can omit them. 
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Close t o  t h e  c r i t i c a l  po in t ,  from t h e  equat ion  of state (see [Ref. 71) 

V = b m + -  I - -  1 InPpb + Pa "."( 2 , / ( l n s p b  n + Pa')'+ s2) 
(21) 

w e  can r e a d i l y  determine t h e  dependence of phase volumes on temperature  

and p res su re  

v =  v, tq  [nl e - e,( + ~ ( p - p , ) ] .  (22) 

The s i g n  + p e r t a i n s  t o  gas ;  the  s i g n  - p e r t a i n s  t o  l i q u i d .  We can 

r e a d i l y  f i n d  t h e  fol lowing expression f o r  h e a t  conversion from (13):  

For 8 =err and p = p K  , (22) and (23) become i n v a l i d  - j u s t  as 

do (18) and (19) -and  it  i s  necessary t o  employ accura t e  formulas.  

3. I n  t h e  preceding r e p o r t s  (Ref. 7 ,  8), w e  d i d  no t  formulate  wi th  

s u f f i c i e n t  c l a r i t y  t h e  method f o r  determining t h e  c r i t i ca l  parameters  of 

a system. 

thermodynamic p o t e n t i a l s  (a, e) = @-, (a, e) determines t h e  curve f o r  /59 

phase equ i l ib r ium a = f ( f3) .  

i s  c a l l e d  t h e  c r i t i ca l  p o i n t .  Because i t  i s  impossible  t o  determine t h e  

c r i t i c a l  p o i n t  from t h e  condi t ion  of phase equi l ibr ium,  a series of 

a d d i t i o n a l  cond i t ions  are introduced i n  thermodynamics i n  o rde r  t o  

L e t  u s  now t u r n  t o  t h i s  i n  g r e a t e r  d e t a i l .  The equat ion  of 

This  curve te rmina tes  a t  t h e  p o i n t  which 

determine it:  

phenomena are 

de termina t ion  

usua l ly  examined sepa ra t e ly ,  and are no t  included i n  a 

of t h e  c r i t i c a l  parameters.  
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I n  t h e  theory developed, t h e  disappearance of t h e  s u r f a c e  energy 

g ives  t h e  f i r s t  cond i t ion ,  which connects t h e  c r i t i c a l  parameters  of 

t h e  system. 

I n  a d d i t i o n ,  j u s t  as was done i n  (Ref. 4 ) ,  it  is  p o s s i b l e  t o  show 

[see ( 3 ) ]  t h a t  t h e  state of t h e  system a t  t h e  c r i t i ca l  po in t  would b e  

abso lu te ly  uns t ab le ,  i f  q = 0. 

The la t te r  condi t ions  should co inc ide  wi th  t h e  normal thermodynamic 

c r i t e r i o n  f o r  s t a b i l i t y  l o s s  a t  the c r i t i ca l  po in t .  I n  view of t h e  

f a c t  t h a t  q ( 8 K ) # o ,  

i s  s t a b l e .  

f o r  t h e  case examined above, t h e  c r i t i ca l  p o i n t  

I n  t h e  reg ion  of biphase states (T < Tk, q <<1), t h e  system is 

almost uns t ab le .  Above t h e  c r i t i c a l  temperature  (q - l), and a l s o  i n  

a d e f i n i t e  p re s su re  reg ion  below the c r i t i ca l  temperature ,  t h e  system 

i s  s t a b l e .  Even i n  t h e  case of a very s imple model (U c o n s t ) ,  it is 

p o s s i b l e  t o  determine t h e  following from an  experiment f o r  t h e  maximum 

of s p e c i f i c  h e a t  and i n t e n s i t y  of s c a t t e r e d  l i g h t :  

and t o  f i n d  t h e  c r i t i c a l  temperature.  

S u b s t i t u t i n g  it i n  ( 2 4 ) ,  w e  f ind  t h e  c r i t i ca l  p re s su re ,  and then  

I n  t h e  gene ra l  case, t h e  c r i t i ca l  volume from t h e  equat ion of state. 

t h e  second cond i t ion  connecting t h e  c r i t i ca l  parameters has  t h e  

fo l lowing  form: 
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Unfortunately, the explicit dependence of the thermodynamic potential 

of a liquid a ( 0 )  on temperature is still not known, and therefore 

we cannot calculate the critical parameters for a real gas model. 

Conclusions 

A statistical theory for the critical point is presented. We 

obtained smoothed dependences, instead of the curves which are charac- 

teristic for thermodynamics and which consist of three parts: liquid, 

region of condensation, and gas. The continuity of the changes from 

one part to another is a principal feature, and is due to the correct 

calculation of the statistical factors. The dependences which are 

found can be interpreted experimentally as jumps in a narrow interval 

of temperature and pressure. 

of phase changes in other systems. 

The theory can be applied to an examination 

Appendix - / 60 

We would like to present a brief summary of the expressions for the 

thermodynamic potential of an equilibrium biphase system. 

assumption contains the postulate that the thermodynamic potential of 

the biphase system equals: 

Our basic 

Qi ( p ,  e) = - f) In A,, 

where X i  is the largest eigen value of the matrix. 

".( z1 zo ), 
z, 2-1 
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c .  

whi le  

-k p (vi -k v - 1 )  x dqlJ ... dg-1.J dvidv-1, I1 
q l , i ( i = l , 2  ... m1) l i es  a t  V1, 

q - l , j ( j = l , 2  ... m-1) l ies a t  V-1. 

The f i r s t  two terms i n  (29) represent  t h e  s ta t i s t ica l  sums of t h e  

system phases and t h e  l a t t e r  term rep resen t s  t h e  i n t e r a c t i o n  between 

phases .  Because 

(30) 2, = e-P&9), 

t hen  expanding t h e  exponent i n  series i n  (30) ,  

i n  t h e  form: 

A 1  can be  represented  

11 = 1 + A,, 

where 

S u b s t i t u t i n g  (31) i n  (27) ,  w e  ob ta in  (1). For a more 

of th i s  s u b j e c t ,  consu l t  (Ref. 7 ) .  

(32) 
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